
Table 1. Ablation on Clipping Level. We test the variation in the total number of encoded points and the
geometric compression ratio achieved by varying the clipping level of the Huffman Tree. The number of
encoded points increases rapidly and tends to saturate around a clipping level of 11-12. At the clipping level
of 12, the compression ratio decreases slightly due to the decoder table overhead. We choose the highest
possible clipping level since it reduces the size of the separate buffer leading to less number of global memory
accesses. Beyond 12, the shared memory allocation bottlenecks. The numbers are calculated and reported on
the Morro Bay scene which consists of 350M points.

Clipping Level Decoder Table Size Encoded Geometry CR
12 4096 98.34 3.52x
11 2048 97.31 3.67x
10 1024 95.23 3.56x
9 512 92.63 3.34x
8 256 87.00 2.86x

Algorithm 1 shows the pseudo-code for how the entire point cloud is encoded and prepared for
the GPU to decompress and rasterize. This is done as a pre-processing step on the CPU and can
take a few minutes.

Algorithm 1: Encoding the entire point cloud.
𝑝𝑜𝑖𝑛𝑡𝑠: the entire set of points to encode
𝑊 : total number of warps in a batch
𝑝𝑜𝑖𝑛𝑡𝑠 ← mortonOrder(𝑝𝑜𝑖𝑛𝑡𝑠) // Sort the points in morton order

for 𝑏𝑎𝑡𝑐ℎ ∈ 𝑝𝑜𝑖𝑛𝑡𝑠 do
𝑑𝑋,𝑑𝑌,𝑑𝑍 ← getDeltaValues(𝑏𝑎𝑡𝑐ℎ) // Calculate independent deltas in XYZ

ℎ𝑇𝑟𝑒𝑒, ℎ𝑇𝑎𝑏𝑙𝑒 ← getHuffman(𝑑𝑋,𝑑𝑌,𝑑𝑍 ) // Create Huffman Tree for deltas

𝑏𝑎𝑡𝑐ℎ𝐵𝑢𝑓 𝑓 𝑒𝑟1, 𝑏𝑎𝑡𝑐ℎ𝐵𝑢𝑓 𝑓 𝑒𝑟2 ← [], [] // Initialize the buffers for this batch

for𝑤 ← 0 to𝑊 do
𝑤𝑎𝑟𝑝𝑃𝑜𝑖𝑛𝑡𝑠 ← 𝑏𝑎𝑡𝑐ℎ[𝑤 : 𝑤 + 1] // Points relevant to this warp

𝑤𝑎𝑟𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟1,𝑤𝑎𝑟𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟2 ← [], [] // Initialize buffers for this warp

for 𝑡 ← 0 to 31 do
𝑡ℎ𝑟𝑒𝑎𝑑𝐵𝑢𝑓 𝑓 𝑒𝑟1, 𝑡ℎ𝑟𝑒𝑎𝑑𝐵𝑢𝑓 𝑓 𝑒𝑟2 ← huffmanEncode(𝑤𝑎𝑟𝑝𝑃𝑜𝑖𝑛𝑡𝑠 [𝑡 :
𝑡 + 1], ℎ𝑇𝑟𝑒𝑒) // Encode the point data for the thread

𝑤𝑎𝑟𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟1 ← 𝑤𝑎𝑟𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟1 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐵𝑢𝑓 𝑓 𝑒𝑟1 // Append to warp Buffer

1

𝑤𝑎𝑟𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟2 ← 𝑤𝑎𝑟𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟2 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐵𝑢𝑓 𝑓 𝑒𝑟2 // Append to warp Buffer

2

end
𝑤𝑎𝑟𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟1 ← sortAndRearrange(𝑤𝑎𝑟𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟1) // For this warp,

re-arrange the first buffer

end
𝑏𝑎𝑡𝑐ℎ𝐵𝑢𝑓 𝑓 𝑒𝑟1 ← 𝑏𝑎𝑡𝑐ℎ𝐵𝑢𝑓 𝑓 𝑒𝑟1 +𝑤𝑎𝑟𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟1 // Append to batch Buffer 1

𝑏𝑎𝑡𝑐ℎ𝐵𝑢𝑓 𝑓 𝑒𝑟2 ← 𝑏𝑎𝑡𝑐ℎ𝐵𝑢𝑓 𝑓 𝑒𝑟2 +𝑤𝑎𝑟𝑝𝐵𝑢𝑓 𝑓 𝑒𝑟2 // Append to batch Buffer 2

end

1



2

Algorithm 2 shows the pseudo-code for the algorithm that every thread in a warp follows to
read its respective data from the packed memory layout. For a thread to know where its data
is from, it needs to book-keep the reads of every other thread. This is done very cheaply using
__ballot_sync every decoding iteration.

Algorithm 2: A thread in a 32-thread Warp reading from re-ordered memory.
𝐸𝑛𝑐𝑜𝑑𝑒𝑑𝐷𝑎𝑡𝑎: the re-packed encoded bit stream
𝐿: maximum codeword length
𝑡𝑖𝑑 : thread index
Input :𝐸𝑛𝑐𝑜𝑑𝑒𝑑𝐷𝑎𝑡𝑎: the re-packed encoded bit stream
Input :𝐿: maximum codeword length
Input :𝑡𝑖𝑑 : thread index
𝑝𝑡𝑟 ← 0 // Data pointer

𝑚𝑦𝑀𝑒𝑚𝐵𝑙𝑜𝑐𝑘 ← 0 // My memory block

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐵𝑖𝑡𝑠 ← 0 // Useful bits in my memory block

for 𝑖 ← 0 to 𝑁 do
𝑛𝑒𝑒𝑑𝑇𝑜𝐹𝑒𝑡𝑐ℎ ← (𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐵𝑖𝑡𝑠 < 𝐿) // Need to fetch another memory block if

out of bits

𝑤𝑎𝑟𝑝𝑀𝑎𝑠𝑘 ← __ballot_sync(0𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑛𝑒𝑒𝑑𝑇𝑜𝐹𝑒𝑡𝑐ℎ) // Communicate my

fetch requirement to other threads

if 𝑛𝑒𝑒𝑑𝑇𝑜𝐹𝑒𝑡𝑐ℎ then
𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← __popcount(𝑤𝑎𝑟𝑝𝑀𝑎𝑠𝑘 × 232−𝑡𝑖𝑑 ) // Determine my fetch location

using information from other threads

𝑚𝑦𝑀𝑒𝑚𝐵𝑙𝑜𝑐𝑘.append(𝐸𝑛𝑐𝑜𝑑𝑒𝑑𝐷𝑎𝑡𝑎[𝑝𝑡𝑟 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡]) // Fetch next 4-byte

memory block

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐵𝑖𝑡𝑠 ← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐵𝑖𝑡𝑠 + 32 // Add 32 more useful bits due to

4-byte fetch

end
𝑝𝑡𝑟 ← 𝑝𝑡𝑟 + __popcount(𝑤𝑎𝑟𝑝𝑀𝑎𝑠𝑘) // Move data pointer by the number of

threads that fetched

end
𝑠𝑦𝑚𝑏𝑜𝑙, 𝑙𝑒𝑛𝑔𝑡ℎ ← decode(𝑚𝑦𝑀𝑒𝑚𝐵𝑙𝑜𝑐𝑘) // Decode the next 𝐿 bits using the

decoder table

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐵𝑖𝑡𝑠 ← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐵𝑖𝑡𝑠 − 𝑙𝑒𝑛𝑔𝑡ℎ // Only 𝑙𝑒𝑛𝑔𝑡ℎ bits used



Supplementary: Real-Time Decompression and Rasterization of Massive Point Clouds 3

M
or
ro

Ba
y

(a) Normalized Reference Depth (b) mAE = 0.4468 (c) mAE = 0.5618

Ba
ny
.(
O
ut
si
de
)

(d) Normalized Reference Depth (e) mAE = 0.0167 (f) mAE = 0.0017

Ba
ny
.(
In
si
de
)

(g) Normalized Reference Depth (h) mAE = 0.0063 (i) mAE = 0.0000026

Fig. 1. We calculate the Absolute Error on the depth maps (obtained from the first render pass) and report
their averages. Due to selecting a subset of points for far-away batches, we get errors in the projected depths
as shown. However, these errors are not significant. Col. 2 shows errors in the method by Schütz et al. [2022]
who used quantized coordinates. Col. 3 shows errors due to our subset level-of-detail method.



4

REFERENCES
Markus Schütz, Bernhard Kerbl, and Michael Wimmer. 2022. Software Rasterization of 2 Billion Points in Real Time. Proc.

ACM Comput. Graph. Interact. Tech. (2022).


	References

