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Fig. 1. Views of two large point clouds, visualized with our method. We compare speed and memory consump-
tion to state-of-the-art work for fast rendering [Schütz et al. 2022]. Our method consumes 4× less memory,
without impeding performance or visible quality loss (le�, insets). The compact representation enables an
8GB laptop GPU to render scenes that previous work could not handle on a 24GB desktop GPU (right).

Large-scale capturing of real-world scenes as 3D point clouds (e.g., using LIDAR scanning) generates billions

of points that are challenging to visualize. High storage requirements prevent the quick and easy inspection

of captured datasets on user-grade hardware. The fastest real-time rendering methods are limited by the

available GPU memory and render only around 1 billion points interactively. We show that we can achieve

state-of-the-art in both while simultaneously supporting datasets that surpass the capabilities of other methods.

We present an on-the-�y point cloud decompression scheme that tightly integrates with software rasterization

to reduce on-chip memory requirements by more than 4×. Our method compresses geometry losslessly and

provides high visual quality at real-time framerates. We use a GPU-friendly, clipped Hu�man encoding for

compression. Point clouds are divided into equal-sized batches, which are Hu�man-encoded independently.

Batches are further subdivided to form easy-to-consume streams of data for massively parallel execution.

The compressed point clouds are stored in an access-aware manner to achieve coherent GPU memory access

and a high L1 cache hit rate at render time. Our approach can decompress and rasterize up to 120 million

Hu�man-encoded points per millisecond on-the-�y. We evaluate the quality and performance of our approach

on various large datasets against the fastest competing methods. Our approach renders massive 3D point

clouds at competitive frame rates and visual quality while consuming signi�cantly less memory, thus unlocking

unprecedented performance for the visualization of challenging datasets on commodity GPUs.
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1 INTRODUCTION

Point clouds are one of the simplest, most commonly used graphics primitives that represent
3D data. Capturing real-world data often results in point clouds as the recovered representation.
High-resolution, large-scale LIDAR scanning can produce a few billion to trillions of points. Such
datasets are challenging to store, process, and render. Visualizing such massive point clouds in
their entirety or even in parts is challenging since such datasets fail to �t in the on-chip VRAM
of the graphics processing unit (GPU). In this paper, we introduce a scheme that uses lossless
geometry compression and achieves real-time decompression and rendering of billions of points.
This allows us to store and render such massive point clouds on a wide range of commodity GPUs.
There are several real-world use cases for handling massive point clouds, such as cultural heritage
preservation and architecture design. The ability for users to directly render their massive captured
datasets on-site—perhaps on a laptop—will allow them to make corrections and adjustments in
real-time. The lossless geometry compression helps us achieve accurate rendering upon close-up
inspection. Our lossless approach, while showcased for rendering, also paves the way for GPU-based
point processing that bene�ts from high-precision inputs (measuring, classi�cation, triangulation)
on extremely large datasets.

Current hardware rasterization pipelines cater to a triangle-based work�ow dealing with vertex
bu�ers, index bu�ers, UV maps, and textures. Point clouds are simpler and often do not require
complex pipeline stages for appropriate rendering (e.g., quad shading). Recently, it has been shown
that software rasterization, using atomic min-max operations, is more e�cient than hardware
rasterization for certain primitives [Evans 2015; Karis et al. 2021]. Schütz et al. [2021] build on this
basic idea to create a point sample rendering software rasterizer for pixel-sized point primitives,
where one point projects to precisely one pixel [Grossman and Dally 1998]. Such point-sample
rendering methods are commonly employed for intuitive and authentic visualization of data by
domain experts. They also can be easily combined with hole-�lling/anti-aliasing for high-quality
renderings as a fast alternative to more expensive splatting, as shown by ADOP [Rückert et al. 2022],
VET [Franke et al. 2023] and TRIPS [Franke et al. 2024]. Recent state-of-the-art solutions [Schütz
et al. 2022] can rasterize up to a billion points on commodity GPUs in real-time, but they are
constrained due to GPU memory for scenes beyond that scale. We revisit the fundamental design of
fast software rasterizers for point clouds to address this issue. Software rasterization provides higher
�exibility in customizing the rendering pipeline than hardware pipelines. In order to maximize
e�ciency, we can choose the underlying data structures to store the primitives: trees, hash-tables,
codebooks, or, in our case, compressed bitstreams.

In this paper, we present a compression-based approach that signi�cantly reduces GPU memory
requirements, coupled with a fast, on-the-�y decompression method that causes little overhead
and easily integrates into software rasterization. We use a GPU-friendly clipped Hu�man encoding
to compress point cloud data. We use a two-level work distribution scheme: The initial point set is
divided into equally-sized batches, each of which is further subdivided into equally-sized segments.
A clipped Hu�man codebook is constructed for the delta-encoded coordinates of points in each
batch. The encoded bitstream is stored in an access-aware manner to accommodate render-time
GPUmemory access and raise cache hit rate. On the GPU, each batch of points can be independently
processed by a compute unit, with its Hu�man table being small enough to keep it in fast, locally-
cached memory. Each segment of the block is decompressed and rasterized by one individual
GPU thread. Achieving high compression rates usually implies unpredictable memory access
patterns; however, our access-aware bitstream ordering ensures highly coalesced memory access
when fetching from slow, device-wide memory. The proposed compression method is lossless and
provides high visual quality while rendering massive point clouds. Finally, to allow users to target
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desired frame rates for their application, we combine our solution with an on-the-�y level-of-detail
(LOD) method that requires no additional pre-processing.

We summarize the key contributions in this paper, which are given below.

• A Clipped Hu�man encoding scheme that compresses points by more than 4× in a lossless,
GPU-friendly manner.
• A 2-level partitioning scheme for points into batches and segments, with independent
Hu�man encoding of each segment. The bitstream of each segment is stored in an access-

aware manner for e�cient reading by GPU threads during rendering time.
• A level-of-detail methodology coupled with the partitioned batches, which allows faster
renderings close to original visual quality if desired.

The remainder of this paper is structured as follows: In Section 2, we discuss previous related
work. Section 3 establishes necessary preliminary context for describing our contributions. In
Section 4, we present our Clipped Hu�man stream design, the proposed (de-)compression schemes
for point clouds on the GPU, and our accompanying level-of-detail rendering solution. Section
5 evaluates our methods in terms of resource consumption, quality, and performance. Section 6
discusses these results and draws �nal conclusions.

2 RELATED WORK

In this section, we review existing methods relevant to our proposed methodology. To provide the
necessary context, we review the beginnings and current state of the art for point cloud rasterization,
compression, and level-of-detail methods.

2.1 Point-based So�ware Rendering

Initiated by the arrival of the uni�ed shader model and general-purpose programmability, the
growing �exibility of the GPU as a massively parallel co-processor has renewed the interest in the
exploration of custom rendering methods and new geometry primitives. Consequently, software-
based rendering methods have returned. Kenzel et al. [2018] created a software-based replacement
to the OpenGL pipeline with performance within one order of magnitude. Advancements in
di�erentiable rendering have further fueled software rasterization to optimize primitives like
triangles [Laine et al. 2020], splines [Li et al. 2020], point clouds [Rückert et al. 2022], and splats [Kerbl
et al. 2023].

Günther et al. [2013] suggested rendering point primitives using custom GPGPU pipelines instead
of the hardware rasterization pipeline and showed on-par or better performance. More recently,
Schütz et al. [2021] exploited new atomic operations to design a simple, but e�ective visibility
solution for point clouds with an interleaved framebu�er: they encoded projected depths and point
IDs into a single 64-bit integer and used 64-bit atomic-min operations to preserve the closest points
to the camera in each pixel. Substituting point IDs with their colors creates the image. This approach
has been used for real-time rendering of point clouds that have been obtained by di�erentiable
optimization [Franke et al. 2023; Rückert et al. 2022]. In our work, we also employ an approach
that is based on software rasterization.
While e�ective, these fast, compute-based rendering solutions are still at an early exploratory

stage. For instance, they do not address the concerns of memory consumption, relying on su�cient
VRAM to store entire datasets in-core. Storage on commodity GPUs becomes the constraint for
point clouds approaching more than a billion points and hinders visualization. Building on top of
state-of-the-art methods [Schütz et al. 2021, 2022], we introduce lossless geometry compression and
optional lossy color compression scheme, pushing the limits imposed by GPU memory severalfold.
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2.2 Compressing Point Clouds

Point clouds captured from real-world data are bulky in size. Outside of high-performance point
cloud rendering, methods to compress themwithout loss of visual quality have been widely explored.
Ochotta and Saupe [2004] divided the point cloud into patches, and for each patch, calculated a
height �eld onto a plane orthogonal to the normal cone axis. In their solution, the height �elds
were encoded using image compression methods. Golla and Klein [2015] used a similar approach
for compressing points at speeds that match the data generation speeds of scanners. However, these
compression methods are lossy, leading to changes and inaccuracies in the scanned geometry.

Data-driven deep learning methods have played an essential role in achieving higher compression
rates for point clouds recently. One of the most signi�cant methods is RIDDLE [Zhou et al. 2022],
which represents the point cloud as range images. It predicts the pixels using a deep neural network,
and entropy encodes the residual values. While such neural approaches have the potential for
promising results, they are unsuitable for our goal of fast on-the-�y decompression due to the slow
inference of neural networks.
LASZip [Isenburg 2013] is a popular reference method for losslessly compressing the standard

LAS format to 7%–25% of the original size. They employ arithmetic encoding [Mo�at et al. 1998;
Witten et al. 1987] of deltas and combine it with predictive encoding to improve the deltas. This
method uses context-based encoding to leverage correlation between attributes (e.g., compressing
a point’s intensity value based on its return number) to obtain the best compression ratio. Since
arithmetic encoding is expensive to decode, we instead build on Hu�man coding [Hu�man 1952]:
Hu�man coding trades compression ratio for a higher decompression performance that is needed
for decoding massive amounts of points on-the-�y.

Schuster et al. [2021] compress textured splats by learning a dictionary of atoms that are concep-
tually similar to DCT basis functions but targeted to a speci�c data set. Each splat stores indices
and weights of up to 8 atoms, which can be used to reconstruct the splat’s original texture directly
during rendering. They also use a lossy quantization scheme to reduce memory for coordinates. In
contrast, our method is lossless for 3D point geometry, which allows for authentic visualization. In
practice, losslessness enables high-precision use cases in visual work�ows, e.g., distance measuring.

2.3 Level of Detail Point Cloud Rendering

Out-of-core level of detail structures are an additional option to reduce the memory footprint of
large data sets, as they enable us to only load and display subsets of the data that are needed for the
current viewpoint. QSplat is one of the �rst point-based LOD structures, initially with the goal to
render large triangle models [Rusinkiewicz and Levoy 2000]. Sequential Point Trees [Dachsbacher
et al. 2003] �attens such a hierarchy into an array, sorted from lower to higher levels of detail,
which allowed more e�cient rendering on the GPU at the time by drawing appropriate subsets
of that array. Layered Point Clouds [Gobbetti and Marton 2004], or LPC for short, introduces
a GPU-friendly and view-dependant LOD structure for point clouds. Since then, variations and
improvements of LPCs have become a standard for rendering massive point cloud data sets with
hundreds of billions of points [Martinez-Rubi et al. 2015; Scheiblauer and Wimmer 2011; Wand
et al. 2008].
Our compression and the developments in the domain of out-of-core LOD structures are com-

plementary. Although we do not utilize the latter in this paper, our compression method should
be bene�cial to LOD rendering as it makes loading data more e�cient. Further, the compressed
data size would also allow to reduce out-of-core solutions’ load-unload frequency, since we can
keep larger number of points in the same chunk of memory. While we do not employ out-of-core
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LODs, we do use a subset-based heuristic to improve rendering times to reach a user’s performance
targets in cases where we would overdraw by hundreds to thousands of points per pixel.

3 PRELIMINARIES

In this section, we brie�y explain the concepts and methods that we use in our proposed approach.
To meet the requirement of lossless compression of the point cloud geometry, we leverage Hu�man
Encoding to compress the coordinates. We incorporate this scheme in the existing state-of-the-art
rendering methods for large point clouds [Schütz et al. 2021, 2022].

3.1 Hu�man Codes

Hu�man Coding [Hu�man 1952] is a widely-used lossless compression scheme that uses fewer bits
to represent frequent symbols. It is particularly well-suited for representing data with a skewed
probability distribution. Hu�man codes are variable-length codes that enable high compression.
However, the default decoding process is essentially sequential; as a result, the corresponding
parallel decoding of Hu�man codes on the GPU is nontrivial. In the original formulation, decoding
needs repeated traversal of the Hu�man tree, which is suboptimal for the single-instruction-
multiple-data (SIMD) architecture of the GPU. Nonetheless, encouraged by its e�ectiveness, several
previous works propose to perform Hu�man processing on the GPU: Tian et al. [2020] propose
an e�cient and customized parallel Hu�man Encoding scheme. Shah et al. [2023] pre-compute
a dictionary of codebooks, such that during compression, the most adequate one of them can be
chosen on-the-�y. Our goal, however, is a di�erent one: we seek a solution that, above all, enables
fast decompression, such that compressed points can be used for image synthesis without impeding
real-time performance. Weißenberger and Schmidt [2018] use the self-synchronizing property of
Hu�man codes to perform parallel decompression compatible with Hu�man’s original method.
Inspired by their work, we extend the ideas from their method and propose our Clipped Hu�man

method that reduces the problems for simultaneous decompression and rendering.

3.2 So�ware Rasterization of Point Clouds

Due to its canonic nature, extensibility, and established use cases, we develop our solution in the
context of basic one-point-to-one-pixel point sample rendering. We build on top of the state-of-the-
art software rasterization methods proposed by Schütz et al. [2021, 2022] for large point clouds. Our
pipeline is similar to their two-pass method: (1) the �rst pass iterates over the points and projects
them to pixel coordinates. The depth and color of only the closest point are stored per pixel, using
atomic-min operations after a cheap, conservative early depth test, (2) the seconds pass iterates
over the pixels and de-couples the color from the frame bu�er to create an image. Each pass occurs
in parallel on the GPU using compute shaders.
One-point-to-one-pixel rendering often creates aliasing artifacts. To counter it, Schütz et al.

[2021] implement a high-quality-shading (HQS) variant of their rasterizer (based on a simpli�ed
high-quality-splatting method by Botsch et al. [2005]) which uses three render passes: (1) the �rst
iterates over points, projects them to the pixels and stores the depth, (2) the second iterates over
points touching each pixel and sums colors of those that lie within 1% of the projected minimum
depth, (3) the third blends the colors by dividing the sum of colors by the number of points in that
1% interval. In our implementation, we extend our point compression solution to this HQS variant
to measure the rendering quality in Sec. 5.2.
Compute-based pipelines like those proposed by previous work have been shown to scale well

for large point clouds, rendering at a throughput equivalent to 2 billion points at 60fps. However,
accurate rendering of large point clouds takes a toll on the amount of GPU VRAM being used
since the previous methods rely on trivial, uncompressed memory layouts to achieve such high
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Fig. 2. Hu�man tree and table. Example of our Clipped Hu�man tree, clipped at level ! = 3. The deleted
nodes are marked in red, dummy nodes in blue, and the collision nodes with crosses. The level ! = 3 is
mapped to a decoder table that we use for decompression. The collision nodes are re-purposed to signify
that a non-frequent value has occurred and the separate stream should be looked-up. They are indicated
by a negative codeword length. Encoding Example: The sequence ��� is encoded to <11 001 000, �>. The
symbol � , having a high probability, has only a 2-bit code 11. Since � is a deleted note, its code is represented
using its ancestor node at level ! = 3 and is stored in the second bu�er in its raw form. � has a 3-bit code 000.
Decoding Example: <11 001 000, �> gets decoded to ���. Since we know the maximum word length ! = 3,
we decode the stream using a 3-bit window. The first 3-bits 110 point to row 7. It decodes to � and indicates
that the CW length was 2, implying that the remaining 1 bit must be a part of the next code. Thus, the next
iteration decodes the 3-bit code 001. The negative length indicates a collision node; the symbol � is read from
the separate data bu�er. Finally, the next 3-bit code is read and decoded as �. More details in Sec. 4.1.

throughputs. In this paper, we propose to tackle this problem while maintaining rendering accuracy
and real-time rates for massive point clouds.

4 METHOD

We start this section by explaining our variation of Hu�man encoding and how it maps to a thread-
block on the GPU using a small toy example. Next, we describe how our scheme can e�ciently
encode point cloud geometry. Next, we cover what problems are faced and how they are solved
during real-time decompression. We also propose a level-of-detail method that �ts well to Hu�man
encoded bitstreams. Finally, we describe the requirements of a good color compression scheme and
how we meet them.

4.1 GPU-Friendly Clipped Hu�man Streams

We illustrate our en-/decoding scheme with the help of an example with 9 symbols and their
probabilities as follows: A: 0.02, B: 0.01, C: 0.01, D: 0.46, E: 0.04, F: 0.02, G: 0.01, H: 0.01, I: 0.42. The
symbols � and � cover 88% of the data. The resulting Hu�man Tree for this example is shown in
Fig. 2. The supplementary video includes an animation for Clipped Hu�man using this example.

Clipped Hu�man. A Hu�man tree can get arbitrarily deep, creating variable length codes that
are GPU-unfriendly. We thus limit the maximum codeword length to ! and clip the Hu�man tree
there. Leaf nodes in the �rst ! levels are assigned codes based on the paths from the root. Leaf
nodes beyond level ! are deleted from the tree. For the less frequent symbols, we can a�ord to
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store them uncompressed in a separate bu�er, keeping the Hu�man tree compact and optimized
for decompressing the frequent values. Fig. 2 shows the clipped Hu�man tree for our example.

Decoder Table. To avoid the expensive tree traversal for decoding the encoded bitstream, we use
a lookup table for decoding [Weißenberger and Schmidt 2018]. In the Hu�man Tree, all leaf nodes
outside of level ! are projected to it as follows:

• Dummy nodes. Leaf nodes with a level lower than ! are extended downward to create
dummy nodes at level !. (These are �, � in the example.)
• Collision nodes. Leaf nodes with a level higher than ! are back-tracked upward to create
collision nodes at level !. (These are �,�, �,�, � in the example.)

After projection, all nodes at level ! are stored in a lookup table of size 2! , which is used to decode
the encoded bitstreams. Codewords that terminate at collision nodes are marked using negative
lengths: they signify non-frequent symbols and are looked up in a separate stream. The right side
of Fig. 2 shows how the level ! = 3 is mapped to a decoder table. ?? outlines how a single Hu�man
stream can be decoded at runtime. We note that this Clipped Hu�man representation can be further
optimized by using a level ! node as a collision node in the dummy sub-tree. We do not exploit
this, since the additional complexity in program logic outweighs the e�ciency bene�ts.
For a batch of data, we create multiple such Hu�man bitstreams with a common Hu�man

tree/table backbone. This allows individual thread blocks to decode these bitstreams independently
in parallel. Clipping the Hu�man tree at level ! �xes the size of the decoder table, allowing us to
store it in shared GPU memory for faster lookups. In practice, we use ! = 12 and a table of size
4096. When applied to the point coordinate attributes in our tested datasets, we observed less than
2% of the symbols being stored separately, i.e., over 98% undergo compression (Tab. 1). An ablation
for varying clipping levels and corresponding e�ect is provided in the supplementary material.

4.2 Compressing Point Cloud Geometry for Rendering

LIDAR data is commonly stored as LAS �les where the geometry of points is represented as three
32-bit integers-,., / . We �rst sort the points in Morton order and then divide the entire point cloud

Algorithm 1: Decoding a Clipped Hu�man bitstream
# : Number of codewords to decode
�=2>343�8CB : Hu�man-encoded data
(4?0A0C4�0C0 : Separately stored data
�42>34A)01;4 : Hu�man decoder table

83G1, 83G2← 0, 0 // Pointers to the 2 Buffers

for 8 ← 0 to # do

2>34 ← �=2>343�8CB [83G1 : 83G1 + !] // Read next ! bits

B~<1>;, ;4=6Cℎ ← �42>34A)01;4 [2>34] // Lookup

if ;4=6Cℎ < 0 then
B~<1>; ← (4?0A0C4�0C0[83G2] // Second Buffer lookup

83G1← 83G1 + |;4=6Cℎ |
83G2← 83G2 + 1

else

83G1← 83G1 + ;4=6Cℎ // Only ;4=6Cℎ bits used

end

end
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X0 Y0 Z0 X1 Y1 Z1 X2 Y2 Z2 ΔX1 ΔZ1 ΔX2 ΔY2 ΔZ20 0 0 < 010110101101    ΔY1 ΔZ2 >
Buffer 1 (98%) Buffer 2 (2%)

ΔY1

Delta Encoding Huffman Encoding

Fig. 3. Coordinate Compression. A sequence of point cloud coordinates is delta-encoded independently in X,
Y, and Z dimensions. The delta values are Hu�man-encoded using our scheme. This is e�ective since their
distribution is skewed. Green values lie within the first ! levels and are Hu�man-compressed. Red values are
stored directly in a separate bu�er. On average, more than 98% of coordinates will be Hu�man-encoded.

into moderate-sized batches. Each batch will be processed by an independent block of GPU threads.
In this work, a batch comprises of 64K points. Points of a batch undergo sequential delta-encoding

(w.r.t. previous coordinates) in -,., / dimensions independently (Fig. 3). These delta values have a
skewed distribution favourable for Hu�man encoding. A Hu�man tree is calculated for this set
of delta values. The batch of points is then partitioned into equal-sized segments which share this
Hu�man tree. Each segment is decompressed and rendered independently by a thread of the block.

4.3 Parallel Decompression and Access-Aware Ordering

A batch of points is assigned to a thread block, with each decoding a segment. To maximize cache
e�ciency for Clipped Hu�man on the GPU, we propose an access-aware ordering for bitstreams.
Due to variable-length codes, threads consume their bitstreams at di�erent speeds. This can

quickly lead to very uncoalesced memory accesses (please refer to Fig. 4 for a visual explanation
using an example). However, given the con�guration of GPU compute jobs and the rules in our
decoding scheme, the order in which data blocks are requested can be simulated ahead of time;
we thus re-arrange the bitstream data in that order. This imparts spatial locality1 to the data and
ensures that threads traversing memory at di�erent speeds read from the same 128-bit cache line
every single time. This is done by assigning every memory-block a 2-tuple key: ⟨8, C⟩ where 8 is the
index of the �rst codeword in the memory block and C is the thread index. Arranging the memory
blocks in increasing order of these keys produces an optimal memory layout as shown in Fig. 4.
We refer readers to the supplementary video to explain this using animations. Furthermore, the
supplementary document contains the decoding algorithm, which leverages this idea.
In practice, a memory-block is 4 bytes, and we pre-compute the memory layout for each warp

(32 threads) independently. During decoding, for a thread to read the correct memory index, it
needs to book-keep how fast the other threads in the warp are proceeding. This is done very
cheaply using __ballot_sync(), a warp-level primitive. To maximize shared memory availability
per block, each uses 1024 threads, or 32 warps. Please refer to supplementary for pseudocode.
After re-arranging the memory layout, we pro�le and observe an increase in the L1-cache hit rate
from 10% to 70%. We note that this cache-friendly ordering strategy could be applied to any other
method with variable-sized data streams, as long as the consumption process is known to follow a
pre-determined access pattern.

4.4 Subset Level of Detail

Schütz et al. [2022] enable on-the-�y LODs of point clouds using adaptive-precision data fetching.
Unfortunately, their solution is incompatible with the delta encoding in our compression. To still
enable users to balance quality and interactivity, we propose a batch-based LOD mechanism that
preserves our compression, as well as point coordinate losslessness. When viewed from far away, it
is not uncommon for thousands of points with similar relative depth to be projected to one pixel.
Since points within a batch and its segments are proximate, they are more likely to project to the

1Spatial locality in GPU memory. Not to be confused with spatial locality in 3D space.
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Fig. 4. Access-aware memory ordering. Consider the above example. There are only two threads ()0,)1) that
decode 6 codewords each {0..5}. Due to variable-length codes, )0 codewords are twice as long as )1, i.e., )0
encodes 1 value per memory block and )1 is able to encode 2 codewords per memory block. But on the GPU,
the threads have to decode the same value simultaneously in a for-loop. This causes )0 to traverse memory
blocks faster than )1, leading to uncoalesced memory access. Sorting the memory blocks by the assigned
keys imparts spatial locality, leading to simultaneously consumed codewords side-by-side (bo�om row).

same pixel the farther away they are from the camera. Thus, only a fraction of points in a segment
need to be decoded and rendered to achieve su�cient visual �delity for them.
For each batch of points, we propose a subset level-of-detail method as described below:

• Calculate the pixel footprint of the batch by projecting the bounding box to the pixel
coordinates.
• Determine an adequate fraction of points to be rendered based on the pixel footprint,
employing a linear drop-o� function.
• Allow a thread to decode and rasterize only the speci�ed fraction of points in its segment.

The coordinates of the bounding box are pre-computed and stored during the pre-processing
step. The linear drop-o� function has a very lenient slope and o�set, allowing 100% of points to
be rendered for close-by batches, as shown in Fig. 5. In order to avoid holes, we have reduced
the length of a segment greatly (64 points) such that compression ratios are not degraded. The
minimum fraction of points is clamped from below at 10%. Notably, The fraction of points adjusts
itself smoothly as batches move closer or farther away from the camera, improving the e�ciency
of our method. This helps us skip less important points, resulting in smoother framerates. However,
skipping points necessarily introduces a small amount of error: We quantify this in Sec. 5.2.

4.5 Color Compression

Our renderer follows a deferred shading approach and colors each pixels in the second pass. As a
result, spatial locality in the lookup of color values cannot be guaranteed. This demands a scheme
that compresses color without a large number of neighboring data points. We use the BC1 [Iourcha
et al. 1999] compression on colors, a common scheme for compressing textures in chunks of 4×4
blocks. We map a running length of 16 points to a 4×4 block, which is compressed to 4 bytes (a
compression ratio of 6). To shade a pixel, these 4 bytes are read and decompressed on the �y.
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Fig. 5. Subset Level of Detail. In this figure, we show renders from two camera positions on the Morro Bay
dataset (350M points). Col. 1 shows the reference, full render of the scene. Col. 2 shows the di�erent batches
of size 64K, where each batch is given a di�erent color. Col. 3 shows the fraction of points being rendered using
a grayscale gradient. White indicates all points being rendered, darker shades indicate lower percentages.

Table 1. Evaluated datasets and compression Ratio (CR). We test our method on a various datasets of di�erent
sizes. Col. 3 reports the percentage of data that lies in the clipped Hu�man tree and undergoes compression.
Col. 4 reports the lossless geometry compression ratio and Col. 5 reports the total compression ratio a�er
accounting for BC1 color compression. On average, we see a 4× compression.

Dataset Uncompressed Size # Points % Encoded Geometry CR Total Compression

Morro Bay 5.2 GB 350 M 98.34% 3.52× 3.84×
Banyunibo 7.9 GB 529 M 98.86% 4.26× 4.52×
Salt Creek 24GB 1.62 B 98.72% 4.04× 4.32×
Ferrum 32GB 2.16 B 98.91% 3.98× 4.27×
Neuchatel 90GB 6.03 B 99.09% 4.47× 4.71×

It is to be noted that BC1 compression is lossy. However, the error in the color is negligible as
shown in Sec. 5.2. We also experimented with using BC7 compression for colors; this provided a
similar quality as BC1 while needing twice as much memory.

5 EVALUATION

In this section, we explain our evaluation methods and the results we obtained. Our approach
achieves high visual quality using signi�cantly reduced memory and operates at real-time speeds.
Following the evaluation scheme of Schütz et al. [2022], level-of-detail optimizations (subset LOD
for ours and adaptive precision for theirs) are enabled during all experiments, except for the
measurement of raw point throughput.

5.1 Compression Ratio

We benchmark our compression method on a variety of aerial and terrestrial scans. In Tab. 1, we list
the suite of datasets we used for our evaluation, along with achieved geometry compression and
total compression. Our compression ratio accounts for all the in-core bu�ers used for on-the-�y
decompression, i.e., encoded bit-stream, separate data stream, Hu�man decoder table, and the
warp-level metadata required for tight-packing as explained in Sec. 4.3. Optionally, colors can be
compressed using BC1, which gives a constant compression ratio of 6×. We account for this and
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Table 2. Le�: To evaluate the quality of our renders, we evaluate its PSNR with the reference image. We
also compare it to Schütz et al. [2022] wherever their method allows it. − indicates the GPU running out of
memory. Right: Closeup view for our second-largest scene, Ferrum.

Dataset Schütz et al. [2022] Ours Ours + BC1

Morro Bay (Overview) 47.22 39.94 39.86
Banyunibo (Outside) 42.51 46.78 41.94
Banyunibo (Inside) 34.42 55.68 45.87
Salt Creek (Overview) - 44.05 44.07
Salt Creek (Closeup) - 43.90 35.26
Ferrum (Overview) - 44.71 44.71
Ferrum (Closeup) - 44.40 41.29

Ferrum (Closeup)
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(a) Reference (b) Schütz et al. [2022] (c) Ours (d) Ours + BC1

Fig. 6. In this figure, we visualize the absolute error in our renderings. Col. 1 shows the reference image,
which is generated with double precision and without any compression or LOD. Col. 2 shows the error in
the images rendered by [Schütz et al. 2022] that quantize coordinates to 30-bits. Col. 3 shows errors in our
rendering due to level-of-detail. Col. 4 shows additional error created due to BC1 color compression. As shown
in Fig. 1, the error introduced by our method is visually imperceptible. In this figure, we have scaled it by 10×
for be�er visibility. Please refer to the supplementary video for animated renderings of all scenes.

report the achievable compression ratio on the full dataset as well. On average, our method reduces
the GPU memory consumption by more than 4×. In practice, this means that our approach enables
users to visualize 4× larger datasets than previous methods on the same hardware.

5.2 Error Metrics

Since our subset LOD method (Sec. 4.4) skips points, the rendered image may not exactly match
the reference image. To better understand this trade-o�, we measure the error among the rendered
images. Shading one pixel with exactly one point leads to a noisy aliased image. For an accurate
comparison of renderings, we use the high-quality-shading (HQS) variant of these methods. The
HQS method blends points in a 1% range of the projected depth [Schütz et al. 2021, 2022].
We calculate the PSNR of our renderings and compare it with the state-of-the-art [Schütz et al.

2022] in Tab. 2. For visualization, we also calculate the absolute error in the renderings and show
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Table 3. In this table, we compare the time taken and memory consumed by our method to prior art on a
wide range of datasets. We calculate the time taken on the 2-pass basic and 3-pass HQS variants. For each
variant, we report results on a 24GB RTX 4090 GPU (le�) and a 8GB RTX 4060 Laptop GPU (right). We also
consider the di�erent loads of overviews/exteriors ("Far"/"Ext.") and closeups/interiors ("Near"/"Int."). What
other methods cannot render on a 24GB GPU, we can with just 8GB. Note that the memory used by Schütz
et al. [2022] is equivalent to the figures listed in Tab. 1. − marks GPUs running out of memory.

Dataset View
Schütz et al. [2022] Ours Ours + BC1

Basic (ms) HQS (ms) Basic (ms) HQS (ms) Mem.
used

Basic (ms) HQS (ms) Mem.
used24GB 8GB 24GB 8GB 24GB 8GB 24GB 8GB 24GB 8GB 24GB 8GB

Morro Bay
Far 1.9 7.4 6.8 31.3 2.6 11.1 8.6 28.4

2.5GB
2.5 11.1 7.6 27.0

1.3GB
Near 1.1 4.0 3.8 13.9 2.5 12.0 5.2 25.7 2.5 12.0 5.2 25.8

Banyunibo
Int. 4.0 - 11.9 - 4.9 24.5 11.1 53.8

3.4GB
4.8 24.3 10.6 53.7

1.7GB
Ext. 3.4 - 13.5 - 4.8 25.6 10.3 56.2 4.7 25.6 10.2 56.6

Salt Creek
Far - - - - 3.6 - 16.1 -

11GB
3.6 16.5 14.7 45.4

5.3GB
Near - - - - 4.9 - 10.4 - 4.9 24.8 10.3 53.8

Ferrum
Far - - - - 4.3 - 18.1 -

15GB
4.3 20.2 16.6 53.8

7.1GB
Near - - - - 5.8 - 12.8 - 5.8 28.1 12.5 62.1

Neuchatel
Far - - - - - - - -

32GB
11.8 - 47.3 -

18GB
Near - - - - - - - - 14.3 - 28.9 -

it in Fig. 6. We evaluate the e�ect of BC1 compression and observe no practical di�erence. For
generating the reference images, we rasterized the point clouds without any compression, with
double precision, and without any level-of-detail mechanism.

Tab. 2 and Fig. 6 demonstrate that our method does not cause signi�cant degradations in visual
quality. Moreover, in some scenes we even achieve better quality than Schütz et al. [2022]; this is due
to completely lossless coordinates, which results in more coherent pixel depths and occlusion. We
also evaluate the error on depth maps as shown in supplementary document. Note that our intention
behind evaluating image quality on the HQS variant is to ensure minimum visual degradation due
to our LOD. Raising the visual quality of point cloud renderings is not a primary focus of this work.

5.3 Performance

We compare the time and memory used by our method to prior art. We report performance metrics
for two versions of our method: with and without color compression (Tab. 3). For each method,
we measure two variants: the base method (2 passes) and the high-quality-shading (HQS) method
(3 passes). We benchmark on a workstation with an NVIDIA RTX4090 and a gaming laptop with
an NVIDIA RTX4060 Laptop GPU. For each, the timings are calculated to render images of size
1920 × 1080 for both closeup/interior and overview/exterior cameras. In accordance with the
reported compression ratios, our used memory in Tab. 3 is a fraction of [Schütz et al. 2022] which
directly uses the uncompressed data (c.f. Tab. 1).
In Tab. 4, we further report point throughput: it measures the raw point processing power of

an algorithm. It di�ers from rendering since we disable the frustum culling and any form of LOD
to process all the points at all times. The throughput of rendering Hu�man-compressed data
reaches up to 124M points per millisecond, compared to 184M points per millisecond that can
be achieved with uncompressed data sets. Note that our method’s LOD reduces the number of
processed points. In contrast, [Schütz et al. 2022] maintains the same number but fetches their
attributes with adaptive precision. Hence, our LOD mechanism helps to compensate for lower raw
point throughput. Unsurprisingly, LOD does not play a major role in close-up views for our method,
but for distant shots it can reduce the GPU workload immensely, depending on the number of
points in the dataset (Morro Bay: 1.8×, Candi Banyunibo: 1.2×, Salt Creek: 4.9×, Ferrum: 5.1×).
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Table 4. Le�: We report the point throughput (in million points per ms) of each method on RTX 4090. Adding
BC1 color compression has a negligible e�ect on throughput. Right: the largest evaluated scene, Neuchatel.

Dataset Points Schütz et al. [2022] Ours

Morro Bay 350 M 184.4 81.5
Banyunibo 529 M 147.0 76.7
Salt Creek 1.62 B - 108.9
Ferrum 2.16 B - 110.7
Neuchatel 6.03 B - 124.4

Neuchatel (Closeup)

Due to the di�erent mechanics and resource usage of our method, frame times are not consistently
higher or lower than Schütz et al. [2022] (e.g., note that they are higher for Banyunibo Basic, but
lower for Banyunibo HQS). On average, our method tends to produce slightly lower framerates,
depending on the scene. Overall, however, our solutionmaintains the prominently high performance
of compute-based point sample rendering solutions. With our method, we can visualize scenes with
more than 6 billion points at 60+ FPS on a consumer-grade GPU, without compromising quality,
while previous work runs out of memory around the 1.5 billion mark.

Since we use shared memory for our look-up table, threads access the table entries with bank
con�icts. These bank con�icts create the biggest bottleneck in our current implementation, limiting
the impact of other design optimizations. Hence, to get a better idea of the bene�ts that access-aware
ordering may provide when fully optimized, we substitute look-up with (compiler-unoptimized)
instructions that generate synthetic point data from the encoded bits. For the Morro Bay scene, we
observe a 30% runtime improvement in the render loop due to the 7× increment in cache hits.

While we did not consider optimizing the compression speed in this work, our CPU implemen-
tation is reasonably quick, taking ≈44B to compress the Morro Bay (350M) dataset on a 13th Gen
Intel Core i9-13900F. This speed depends on the size and the compressibility of the data. We leave a
massively parallel GPU implementation of our compression preprocess to future investigation.

6 DISCUSSION AND CONCLUSION

In order to facilitate the rendering of large point clouds that struggle to �t in the GPU, we propose
a compression-based solution. We apply lossless compression on point geometry and store it in
a format that can be simultaneously decompressed and rendered using software rasterization.
We achieve a compression ratio of >4× and maintain real-time framerates alongside high-quality
rendering. In contrast to previous work, our lossless representation allows us to recover exact point
coordinates in massive point clouds. This property can raise the �delity in close-up renderings and
common practical tasks requiring maximum precision (e.g., distance measuring). Our method is
designed for real-time visualization of large-scale captures. While our results already suggest strong
bene�ts for practical, real-world applications, there are several directions for further improvement.

Hu�man Encoding.We use a lookup table as a proxy for the Hu�man tree. This method of storage
is redundant due to the repetition of symbols (Fig. 2). Improving this can enable (i) storing a larger
Hu�man tree/table in shared memory, leading to higher compression, and (ii) eliminating the sepa-
rate data bu�er. We hope to exploit the self-synchronizing property of Hu�man codes [Weißenberger
and Schmidt 2018] to push compression ratios even further by encoding in a single stream.

Lossy Compression. Lossy geometry compression can give better compression, where appropriate.
LIDAR scanners often sample in a straight line. The idea of BC1 color compression can directly be
applied here: store two end-points of the scan-line and interpolate the in-between points.
Performance Bottlenecks. Bank con�icts in shared memory for Hu�man table look-ups cause a

performance bottleneck. Minimizing them would result in raised e�ciency. Also, the computation
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of encoded bitstreams during pre-processing takes a few minutes, depending on the size and data
compressibility. Online conversion could be a relevant quality-of-life improvement of our method.
With the steadily increasing complexity of captured datasets, our work provides an important

step toward addressing the concerns of domain experts, as well as regular users: With the presented
approach, we hope to address the need for swift, authentic rendering methods, which are trailing
behind the rapidly advancing solutions for reconstruction and generation of large datasets.

A webpage for this paper with all relevant links (supplementary, code and video) is available at:
https:// rahul-goel.github.io/pcrhpg24.
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